The Holy Grail of Tissue Engineering?

Islet Cell Microencapsulation in Type 1 Diabetes Mellitus

Authors

  • Brian Woods School of Medicine, Trinity College, University of Dublin, Ireland

Keywords:

Medicine

Abstract

The immunoisolation of transplanted islet cells represents a promising future therapy for the treatment of type 1 diabetes mellitus (T1DM). Microencapsulation is one avenue being explored to restore insulin independence while simultaneously protecting islet cells from destruction by the immune system. A variety of techniques have been developed to encapsulate the islet cells, with alginate being the most commonly employed biomaterial. The great challenge in microencapsulation is to ensure that the capsule is permselective, allowing for the free diffusion of oxygen, nutrients and waste products while providing an effective barrier to cytokines and immune identification. Other alternatives including nanoencapsulation and conformal coating are emerging. In vivo work is now beginning to be translated into clinical trials.

References

1 Patterson C., Guariguata L., Dahlquist G., Soltész G., Ogle G., Silink M. Diabetes in the young - a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pract. 103: 161-75 (2014).
2 International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels, Belgium: International Diabetes Federation (2013).
3 Shapiro A.M., Lakey J.R., Ryan E.A., et al. Islet transplan- tation in seven patients with type 1 diabetes mellitus using a glu- cocorticoid-free immunosuppressive regimen. N Engl J Med. 343, 230-238 (2000).
4 Shapiro A.M., Ricordi C., Hering B.J., Auchincloss H., Lindblad R., Robertson P., Secchi A. et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 355, 1318-1330 (2006).
5 De Vos, P, Marijke M. Faas, Strand B., and Calafiore R. Alginate-based microcapsules for immunoisolation of pancreat- ic islets. Biomaterials 27(32) 5603-5617 (2006).
6 Lim F., Sun A.M. Microencapsulated islets as bioartifi- cial endocrine pancreas. Science 210, 908-910 (1980).
7 Hasse, C., G. Klöck, A. Schlosser, U. Zimmermann, and M. Rothmund. Parathyroid allotransplantation without immuno- suppression. The Lancet 350,1296-1297 (1997).
8 Soon-Shiong, Patrick, Edward Feldman, Richard Nelson, Jan Komtebedde, Olav Smidsrod, Gudmund Skjak-Braek, Terje Espevik, Roswitha Heintz, and Martin Lee. Successful reversal of spontaneous diabetes in dogs by intraperitoneal microencapsu- lated islets. Transplantation. 54,(5) 769-774 (1992).
9 O’Shea, Geraldine M., Mattheus FA Goosen, and Antho- ny M. Sun. Prolonged survival of transplanted islets of Langer- hans encapsulated in a biocompatible membrane. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 804, 133-136 (1984).
10 Tarantal AF, Lee CCI, Itkin-Ansari P. Real-time Biolu- minescence Imaging of Macroencapsulated Fibroblasts Reveals Allograft Protection in Rhesus Monkeys (Macaca mulatta). Trans- plantation;88(1):38-41 (2009).
11 Tuch, Bernard E., Gregory W. Keogh, Lindy J. Williams, Wei Wu, Jayne L. Foster, Vijayganapathy Vaithilingam, and Rob- ert Philips. “Safety and viability of microencapsulated human is- lets transplanted into diabetic humans.” Diabetes care 32, no. 10; 1887-1889 (2009).
12 Elliott, Robert B., Livia Escobar, Paul LJ Tan, Maria Muzina, Sahar Zwain, and Christina Buchanan. Live encapsu- lated porcine islets from a type 1 diabetic patient 9.5 years after xenotransplantation. Xenotransplantation 14(2) 157-161 (2007).
13 Vijayaganapathy V., Bernard E. Tuch. “Islet transplanta- tion and encapsulation: an update on recent developments.” The review of diabetic studies: RDS 8(1) 51 (2011).
14 Weir, G. C. Islet encapsulation: advances and obstacles. Diabetologia 56, no. 7: 1458-1461. (2013)
15 Clayton, H. A., N. J. London, P. S. Colloby, P. R. Bell, and R. F. James. A study of the effect of capsule composition on the via- bility of cultured alginate/poly-l-lysine--encapsulated rat islets. Diabetes research (Edinburgh, Scotland) 14,3:27-132 (1990).
16 Scharp D.W., Marchetti P. Encapsulated islets for diabe- tes therapy: History, current progress, and critical issues requir- ing solution. Adv Drug Deliv Rev.67, 35-73 (2014).
17 Duvivier-Kali, Valérie F., Abdulkadir Omer, Richard J. Parent, John J. O’Neil, and Gordon C. Weir. Complete protection of islets against allorejection and autoimmunity by a simple bar- ium-alginate membrane. Diabetes 50, (8) 1698-1705 (2001).
18 Finegood, Diane T., Luisa Scaglia, and Susan Bon- ner-Weir. Dynamics of -cell mass in the growing rat pancre- as: estimation with a simple mathematical model. Diabetes 44, 3:249-256 (1995).
19 Valdés-González, Rafael A., Luis M. Dorantes, G. Nayely Garibay, Eduardo Bracho-Blanchet, Armando J. Mendez, Roberto Dávila-Pérez, Robert B. Elliott, Luis Terán, and David JG White. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. European Journal of Endocrinol- ogy 153, 3:419-427 (2005).
REVIEWS
20 ValdesGonzalez, R., A. L. RodriguezVentura, D. J. G. White, E. BrachoBlanchet, A. Castillo, B. RamírezGonzález, M. G. LópezSantos, B. H. LeónMancilla, and L. M. Dorantes. Longterm followup of patients with type 1 diabetes transplanted with ne- onatal pig islets. Clinical & Experimental Immunology 162, 3:537- 542 (2010).
21 Elliott, R. B., L. Escobar, R. Calafiore, G. Basta, O. Garka- venko, A. Vasconcellos, and C. Bambra. Transplantation of mi- cro-and macroencapsulated piglet islets into mice and monkeys. Transplantation Proceedings, 37, (1):466-469 (2005).
22 Elliott, R. B., L. Escobar, P. L. J. Tan, O. Garkavenko, R. Calafiore, P. Basta, A. V. Vasconcellos, D. F. Emerich, C. Thanos, and C. Bambra. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cyno- molgus primates. Transplantation Proceedings, 37, 8:3505-3508 (2005).
23 Skinner, Stephen JM, Paul LJ Tan, Olga Garkavenko, Marija Muzina, Livia Escobar, and Robert B. Elliott. “Cell Replace- ment Therapy: The Rationale for Encapsulated Porcine Islet Transplantation.” in: D. Wagner (Ed.), Type 1 Diabetes Complica- tions, In Tech Europe, Croatia (2011).
24 Dionne, Keith E., Clark K. Colton, and M. Lyarmush. Ef- fect of hypoxia on insulin secretion by isolated rat and canine is- lets of Langerhans. Diabetes 42,1: 12-21 (1993).
25 Schrezenmeir, J., L. Gerö, C. Laue, J. Kirchgessner, A. Müller, A. Hüls, R. Passmann, H. J. Hahn, L. Kunz, and W. Muel- ler-Klieser. “The role of oxygen supply in islet transplantation. In Transplantation proceedings, 24, 2925. (1992).
26 Schrezenmeir, Jürgen, Judith Kirchgessner, Lazlo Gerö, Leoni A. Kunz, Jürgen Beyer, and Wolfgang Mueller-Klieser. Ef- fect of microencapsulation on oxygen distribution in islets or- gans. Transplantation 57, 1308-1314 (1994).
27 De Vos, Paul, Bart De Haan, Jenny Pater, and Reinout Van Schilfgaarde. Association between capsule diameter, ade- quacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation 62, 893-899 (1996).
28 De Vos, Paul, Bart De Haan, Gerrit HJ Wolters, and Re- inout Van Schilfgaarde. Factors Influencing the Adequacy of Microencapsulation of Rat Pancreatic Islets. Transplantation 62, 888-893 (1996).
29 De Vos, Paul, J. F. Van Straaten, Arie G. Nieuwenhuizen, Martijn de Groot, Rutger J. Ploeg, Bart J. De Haan, and Reinout Van Schilfgaarde. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 48, 1388 (1999).
30 King, Aileen, Arne Andersson, Berit L. Strand, Joey Lau, Gudmund Skjåk-Bræk, and Stellan Sandler. “The role of capsule composition and biologic responses in the function of trans- planted microencapsulated islets of langerhans1.” Transplanta- tion 76, 275-279 (2003).
31 Cardozo AK, Proost P, Gysemans C, Chen MC. IL-1beta and IFN-gamma induce the expression of diverse chemokines and il-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 46:255-66 (2003).
32 De Vos, P., I. Smedema, H. Van Goor, H. Moes, J. Van Zanten, S. Netters, L. F. M. de Leij, A. De Haan, and B. J. De Haan. “Association between macrophage activation and function of mi- cro-encapsulated rat islets.” Diabetologia 46, 666-673 (2003).
33 De Vos, Paul, Bart J. de Haan, Aalzen de Haan, Jacoba van Zanten, and Marijke M. Faas. Factors influencing functional sur- vival of microencapsulated islet grafts. Cell transplantation 13, 515-524 (2004).
34 De Vos, P., B. J. De Haan, D. Vegter, J-L. Hillebrands, J. H. Strubbe, J. E. Bruggink, and R. Van Schilfgaarde. Insulin levels af- ter portal and systemic insulin infusion differ in a dose-depend- ent fashion. Hormone and Metabolic Research. 30, 721-725 (1998).
35 Řıhová, Blanka. Immunocompatibility and biocompat- ibility of cell delivery systems. Advanced drug delivery reviews. 42, 65-80 (2000).
36 De Vos, Paul, Chris G. van Hoogmoed, Bart J. de Haan, and Henk J. Busscher. Tissue responses against immunoisolating alginatePLL capsules in the immediate posttransplant period. Journal of biomedical materials research. 62, 430-437 (2002).
37 Bolzán, Alejandro D., and Martha S. Bianchi. Genotox- icity of streptozotocin. Mutation Research/Reviews in Mutation Research. 512, 121-134 (2002).
38 King, Aileen, Arne Andersson, and Stellan Sandler. Cytokine-Induced Functional Suppression of Microencapsulat- ed Rat Pancreatic Islets in Vitro. Transplantation. 70, 380-383 (2000).
39 Basta, G., P. Sarchielli, G. Luca, L. Racanicchi, C. Nastruz- zi, L. Guido, F. Mancuso et al. Optimized parameters for microen- capsulation of pancreatic islet cells: an in vitro study clueing on islet graft immunoprotection in type 1 diabetes mellitus. Trans- plant immunology. 13, 289-296 (2004).
40 Piro, Salvatore, Roberto Lupi, Francesco Dotta, Giovanni Patan, Maria A. Rabuazzo, Lorella Marselli, Carmela Santangelo et al. Bovine Islets Are Less Susceptible Than Human Islets to Dam- age by Human Cytokines. Transplantation 71, 21-26 (2001).
41 Jacobs-Tulleneers-Thevissen, D., M. Chintinne, Z. Ling, Pieter Gillard, Luc Schoonjans, G. Delvaux, B. L. Strand, F. Gorus, B. Keymeulen, and D. Pipeleers. Sustained function of al- ginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 56, 1605-1614 (2013).
42 De Vos, P, van Hoogmoed C G , van Zanten J, Netter S., Strubbe J H, Busscher H J. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomateri- als 24, 305-312 (2003).

Downloads

Published

2015-01-01

How to Cite

Woods, B. (2015). The Holy Grail of Tissue Engineering? Islet Cell Microencapsulation in Type 1 Diabetes Mellitus. Trinity Student Medical Journal , 16(1), Page 56–62. Retrieved from https://ojs.tchpc.tcd.ie/index.php/tsmj/article/view/1876

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.