Adenovirus Manipulation for Use as an Effective Delivery Vector

Authors

  • Aidan O'Riain Moyne Institute of Preventive Medicine, Trinity College Dublin, University of Dublin, Ireland

Keywords:

Adenovirus, Vector, Vaccine, Biotherapeutics

Abstract

Adenoviruses are used as delivery vectors in many different biotherapeutic systems to provide treatment options in several clinical settings. Their relative safety, potent induction of an immune response, and ease of production have allowed these vectors to appear at the forefront of clinical medicine in recent times, with applications in gene therapies, cancer treatments, and vaccines (including those for SARS-CoV-2). Their ease of genome manipulation and large gene transduction abilities make them particularly attractive for use as delivery vectors. This paper aims to show that, despite significant challenges, adenoviruses have generally been effective as delivery vectors for gene therapies and vaccination strategies. Taking advantage of their diversity and delineated viral tropism is critical to implementing effective clinical strategies, moderating the negative effects of pre-existing immunity, combatting transient action, and optimising target cell specificity. Overall, this paper argues that adenoviral vectors are a promising tool for use in a wide range of clinical applications.

References

1. Flint S, Racaniello, V., Rall, G., Hatziioannou, T. and Skalka, A. Principles of Virology: American Society for Microbiology; 2015.
2. Beatty M, Curiel D. Adenovirus Strategies for Tissue-Specific Targeting. Advances in Cancer Research. 2012;115:39-67.
3. Kajon AE, Weinberg JB, Spindler KR. Adenoviruses. Reference Module in Biomedical Sciences: Elsevier; 2019.
4. Talmadge JE, Cowan KH. 31 - Gene Therapy in Oncology. In: NiederhuberJE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, editors. Abeloff’s Clinical Oncology (Fifth Edition). Philadelphia: Churchill Livingstone;2014. p. 493-507.e4.
5. Bollard CM, Russell C, Cruz Y, Brenner MK. CHAPTER 19 - Gene Therapy and Allergy. In: Leung DYM, Sampson HA, Geha R, Szefler SJ, editors. Pediatric Allergy: Principles and Practice (Second Edition). Edinburgh:W.B. Saunders; 2010. p. 211-22.
6. Gilgenkrantz H, Duboc D, Juillard V, Couton D, Pavirani A, Guillet JG, et al.Transient Expression of Genes Transferred In Vivo into Heart Using First-Generation Adenoviral Vectors: Role of the Immune Response. HumanGene Therapy. 1995;6(10):1265-74.
7. Mast TC, Kierstead L, Gupta SB, Nikas AA, Kallas EG, Novitsky V, et al.International epidemiology of human pre-existing adenovirus (Ad)type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates ofhigh Ad5 titers and implications for potential HIV vaccine trials. Vaccine.2010;28(4):950-7.
8. Zhao H, Xu C, Luo X, Wei F, Wang N, Shi H, et al. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients. Front Immunol.2018;9:335.
9. Zhang S, Huang W, Zhou X, Zhao Q, Wang Q, Jia B. Seroprevalence of neutralizing antibodies to human adenoviruses type-5 and type-26 and chimpanzee adenovirus type-68 in healthy Chinese adults. J Med Virol.2013;85(6):1077-84.
10. Marshall E. Gene Therapy Death Prompts Review of Adenovirus Vector. Science. 1999;286(5448):2244-5.
11. Stolberg SG. The biotech death of Jesse Gelsinger. NY Times Mag.1999;28:136-40.
12. Farnós O, Gelaye E, Trabelsi K, Bernier A, Subramani K, Kallel H, etal. Establishing a Robust Manufacturing Platform for Recombinant Veterinary Vaccines: An Adenovirus-Vector Vaccine to Control Newcastle Disease Virus Infections of Poultry in Sub-Saharan Africa. Vaccines(Basel). 2020;8(2).
13. Coughlan L. Factors Which Contribute to the Immunogenicity of NonreplicatingAdenoviral Vectored Vaccines. Front Immunol. 2020;11:909.
14. Sun J, Zhuang Z, Zheng J, Li K, Wong RL, Liu D, et al. Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell. 2020;182(3):734-43.e5.
15. Li C, Psatha N, Sova P, Gil S, Wang H, Kim J, et al. Reactivation of γ-globinin adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood. 2018;131(26):2915-28.
16. Lukashev AN, Zamyatnin AA, Jr. Viral Vectors for Gene Therapy: Current State and Clinical Perspectives. Biochemistry (Mosc). 2016;81(7):700-8.
17. Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes & Diseases.2017;4(2):43-63.
18. Sakhuja K, Reddy PS, Ganesh S, Cantaniag F, Pattison S, Limbach P, etal. Optimization of the generation and propagation of gutless adenoviral vectors. Hum Gene Ther. 2003;14(3):243-54.
19. Farnós O, Gelaye E, Trabelsi K, Bernier A, Subramani K, Kallel H, etal. Establishing a Robust Manufacturing Platform for Recombinant Veterinary Vaccines: An Adenovirus-Vector Vaccine to Control Newcastle Disease Virus Infections of Poultry in Sub-Saharan Africa. Vaccines(Basel). 2020;8(2).
20. Shen CF, Lanthier S, Jacob D, Montes J, Beath A, Beresford A, et al. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3). Vaccine. 2012;30(2):300-6.
21. Scaria A, St George JA, Jiang C, Kaplan JM, Wadsworth SC, Gregory RJ. Adenovirus-mediated persistent cystic fibrosis transmembrane conductance regulator expression in mouse airway epithelium. Journalof Virology. 1998;72(9):7302-9.
22. Zhang Y, Bergelson JM. Adenovirus receptors. Journal of Virology.2005;79(19):12125-31.
23. Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell.1993;75(2):207-16.
24. Harvey BG, Leopold PL, Hackett NR, Grasso TM, Williams PM, Tucker AL,et al. Airway epithelial CFTR mRNA expression in cystic fibrosis patient safter repetitive administration of a recombinant adenovirus. J Clin Invest.1999;104(9):1245-55.
25. Knowles MR, Hohneker KW, Zhou Z, Olsen JC, Noah TL, Hu P-C, et al. A Controlled Study of Adenoviral-Vector–Mediated Gene Transfer in the Nasal Epithelium of Patients with Cystic Fibrosis. New England Journal of Medicine. 1995;333(13):823-31.
26. Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines. 2015;14(11):1509-23.
27. Kim MH, Kim HJ, Chang J. Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length Spike protein of Middle East respiratory syndrome coronavirus. PLoS One. 2019;14(7):e0220196.
28. Worgall S, Leopold PL, Wolff G, Ferris B, Van Roijen N, Crystal RG. Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum GeneTher. 1997;8(14):1675-84.
29. Greber UF, Flatt JW. Adenovirus Entry: From Infection to Immunity. Annual Review of Virology. 2019;6(1):177-97.
30. Koo T, Yoon A-R, Cho H-Y, Bae S, Yun C-O, Kim J-S. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Research. 2017;45(13):7897-908.
31. Green CA, Sande CJ, Scarselli E, Capone S, Vitelli A, Nicosia A, et al. Novel genetically-modified chimpanzee adenovirus and MVA-vectored respiratory syncytial virus vaccine safely boosts humoral and cellular immunity in healthy older adults. J Infect. 2019;78(5):382-92.
32. Mensah VA, Roetynck S, Kanteh EK, Bowyer G, Ndaw A, Oko F, et al. Safety and Immunogenicity of Malaria Vectored Vaccines Given with Routine Expanded Program on Immunization Vaccines in Gambian Infants and Neonates: A Randomized Controlled Trial. Front Immunol.2017;8:1551.
33. Gurwith M, Lock M, Taylor EM, Ishioka G, Alexander J, Mayall T, et al.Safety and immunogenicity of an oral, replicating adenovirus serotype 4vector vaccine for H5N1 influenza: a randomised, double-blind, placebo controlled, phase 1 study. The Lancet Infectious Diseases. 2013;13(3):238-50.
34. Liebowitz D, Gottlieb K, Kolhatkar NS, Garg SJ, Asher JM, Nazareno J,et al. Efficacy, immunogenicity, and safety of an oral influenza vaccine:a placebo-controlled and active-controlled phase 2 human challenge study. The Lancet Infectious Diseases. 2020;20(4):435-44.
35. Reid TR, Freeman S, Post L, McCormick F, Sze DY. Effects of Onyx-015among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Therapy. 2005;12(8):673-81.
36. Wold WS, Toth K. Adenovirus vectors for gene therapy, vaccination andc ancer gene therapy. Curr Gene Ther. 2013;13(6):421-33.
37. Peng Z. Current Status of Gendicine in China: Recombinant HumanAd-p53 Agent for Treatment of Cancers. Human Gene Therapy.2005;16(9):1016-27.
38. Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. Journal of Controlled Release. 2020;327:788-800.
39. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology. 2014;32(4):347-55.
40. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D,et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362(6410):86-91.
41. Reynolds PN, Dmitriev I, Curiel DT. Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther.1999;6(7):1336-9.
42. Wang Z, Wang B, Lou J, Yan J, Gao L, Geng R, et al. Mutation in fiber of adenovirus serotype 5 gene therapy vector decreases liver tropism. Int JClin Exp Med. 2014;7(12):4942-50.
43. Gall J, Kass-Eisler A, Leinwand L, Falck-Pedersen E. Adenovirus type5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J Virol.
44. Koski A, Karli E, Kipar A, Escutenaire S, Kanerva A, Hemminki A. Mutationof the fiber shaft heparan sulphate binding site of a 5/3 chimericadenovirus reduces liver tropism. PLoS One. 2013;8(4):e60032.
45. Gao J, Zhang W, Mese K, Bunz O, Lu F, Ehrhardt A. Transient ChimericAd5/37 Fiber Enhances NK-92 Carrier Cell-Mediated Delivery of Oncolytic Adenovirus Type 5 to Tumor Cells. Mol Ther Methods Clin Dev.2020;18:376-89.
46. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD,Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor specific cytolysis and antitumoral efficacy that can be augmented bystandard chemotherapeutic agents. Nature Medicine. 1997;3(6):639-45.
47. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, et al. Lateviral RNA export, rather than p53 inactivation, determines ONYX-015tumor selectivity. Cancer Cell. 2004;6(6):611-23.
48. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, et al. Aphase I trial of CV706, a replication-competent, PSA selective oncolyticadenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 2001;61(20):7464-72.
49. Kim J, Cho JY, Kim JH, Jung KC, Yun CO. Evaluation of E1B geneattenuatedreplicating adenoviruses for cancer gene therapy. Cancer Gene Ther. 2002;9(9):725-36.
50. Garcia-Carbonero R, Salazar R, Duran I, Osman-Garcia I, Paz-Ares L,Bozada JM, et al. Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J Immunother Cancer. 2017;5(1):71.
51. Dyer A, Di Y, Calderon H, Illingworth S, Kueberuwa G, Tedcastle A, et al. Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of inflammatory mediators. Mol Ther Oncolytics. 2016;4:18-30.
52. O’Cathail SM, Davis S, Holmes J, Brown R, Fisher K, Seymour L, etal. A phase 1 trial of the safety, tolerability and biological effects of intravenous Enadenotucirev, a novel oncolytic virus, in combination with chemoradiotherapy in locally advanced rectal cancer (CEDAR). Radiat Oncol. 2020;15(1):151-.
53. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, LieberA. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. Journal of Virology. 2000;74(6):2567-83.
54. Bhatia S, O’Bryan SM, Rivera AA, Curiel DT, Mathis JM. CXCL12 retargetingof an adenovirus vector to cancer cells using a bispecific adapter.Oncolytic Virother. 2016;5:99-113.
55. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, etal. Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell.2008;132(3):397-409.
56. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) againstSARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99-111.
57. Fernandez-Garcia L, Pacios O, González-Bardanca M, Blasco L, BleriotI, Ambroa A, et al. Viral Related Tools against SARS-CoV-2. Viruses.2020;12(10).
58. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B,et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine againstCovid-19. New England Journal of Medicine. 2021;384(23):2187-201.
59. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-RammerstorferS, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020;396(10249):467-78.
60. Dicks MD, Spencer AJ, Coughlan L, Bauza K, Gilbert SC, Hill AV, et al. Differential immunogenicity between HAdV-5 and chimpanzee adenovirus vector ChAdOx1 is independent of fiber and penton RGD loop sequences in mice. Sci Rep. 2015;5:16756.
61. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM,Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19vaccine administered in a prime-boost regimen in young and old adults(COV002): a single-blind, randomised, controlled, phase 2/3 trial. TheLancet. 2020.
62. Zhu F-C, Guan X-H, Li Y-H, Huang J-Y, Jiang T, Hou L-H, et al.Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet.2020;396(10249):479-88.
63. Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop. 2020;214:105778-.64. Dyer O. Covid-19: Countries are learning what others paid for vaccines.BMJ. 2021;372:n281.
65. Zhu J, Huang X, Yang Y. Innate Immune Response to Adenoviral Vectors Is Mediated by both Toll-Like Receptor-Dependent and -Independent Pathways. Journal of Virology. 2007;81(7):3170-80.
66. Sharma PK, Dmitriev IP, Kashentseva EA, Raes G, Li L, Kim SW, et al.Development of an adenovirus vector vaccine platform for targetingdendritic cells. Cancer Gene Ther. 2018;25(1-2):27-38.
67. Bullard BL, Corder BN, Gordon DN, Pierson TC, Weaver EA.Characterization of a Species E Adenovirus Vector as a Zika virus vaccine.Scientific Reports. 2020;10(1):3613-.
68. Weaver EA. Vaccines within vaccines: the use of adenovirus types 4 and 7as influenza vaccine vectors. Hum Vaccin Immunother. 2014;10(3):544-56.
69. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, ZubkovaOV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet.2021;397(10275):671-81.
70. Callaway E. Russia announces positive COVID-vaccine results from controversial trial. Nature. 2020.
71. Cari L, Fiore P, Naghavi Alhosseini M, Sava G, Nocentini G. Blood clots and bleeding events following BNT162b2 and ChAdOx1 nCoV-19 vaccine: An analysis of European data. Journal of Autoimmunity. 2021;122:102685.
72. McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, Janes H, etal. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. The Lancet. 2008;372(9653):1894-905.
73. Sekaly R-P. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J Exp Med. 2008;205(1):7-12.
74. Sayedahmed EE, Kumari R, Shukla S, Hassan AO, Mohammed SI, YorkIA, et al. Longevity of adenovirus vector immunity in mice and its implications for vaccine efficacy. Vaccine. 2018;36(45):6744-51.
75. Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Advectors: humoral, cellular, and innate response, what’s important?Human Vaccines & Immunotherapeutics. 2014;10(10):2875-84.
76. Milligan ID, Gibani MM, Sewell R, Clutterbuck EA, Campbell D, PlestedE, et al. Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial. JAMA. 2016;315(15):1610-23.
77. Geisbert TW, Bailey M, Hensley L, Asiedu C, Geisbert J, Stanley D, et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol. 2011;85(9):4222-33.
78. Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, deBéthune M-P, et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. Journal of virology.2003;77(15):8263-71.
79. Ruohola A, Waris M, Allander T, Ziegler T, Heikkinen T, Ruuskanen O.Viral etiology of common cold in children, Finland. Emerg Infect Dis.2009;15(2):344-6.
80. Heikkinen T, Järvinen A. The common cold. The Lancet.2003;361(9351):51-9.

Downloads

Published

2022-01-31

How to Cite

O’Riain, A. (2022). Adenovirus Manipulation for Use as an Effective Delivery Vector. Trinity Student Medical Journal , 21(1), 41–49. Retrieved from https://ojs.tchpc.tcd.ie/index.php/tsmj/article/view/2197

Similar Articles

You may also start an advanced similarity search for this article.