Targeting the Inflammasome: A cure for Alzheimer’s disease?

Authors

  • Mark Milner

Keywords:

Medicine

Abstract

Alzheimer’s disease is the most common neurodegenerative disease in the world. Despite years of intense research, its pathogenesis remains quite controversial. Many different explanations have been proposed to describe its onset, the most established of which is the β-amyloid hypothesis. This hypothesis proposes that the disease is primarily caused by the formation of β-amyloid plaques in the brain. The presence of these plaques, it is suggested, ultimately leads to neuroinflammation, tau aggregation and, eventually, neuronal death and the often-cited neurocognitive sequelae observed in Alzheimer’s patients. However, recent evidence suggests neuroinflammation may in fact be a root cause of the disease as opposed to acting as an eventual or coincidental manifestation. More specifically, it has been found that the activation of inflammasomes in microglia (the brains immune cells) contributes to the production of proinflammatory cytokines which then potentiates the neuroinflammatory response, with other downstream affects including increased β-amyloid plaque build-up, tau aggregation and a loss in cognitive function. There- fore, more and more studies are suggesting that neuroinflammation - and particularly the inflammasome - could be targeted therapeutically to prevent and treat Alzheimer’s disease in patients.

References

Abais, J. M., Xia, M., Zhang, Y., Boini, K. M., & Li, P. L. (2015). Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal, 22(13), 1111-1129. doi:10.1089/ ars.2014.5994
Agostini, L., Martinon, F., Burns, K., McDermott, M. F., Hawkins, P. N., & Tschopp, J. (2004). NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity, 20(3), 319-325.
Aisen, P. S., Gauthier, S., Ferris, S. H., Saumier, D., Haine, D., Garceau, D., . . . Sampalis, J. (2011). Tramiprosate in mild-to-moderate Alzheimer’s disease - a randomized, double- blind, placebo-controlled, multi- centre study (the Alphase Study). Arch Med Sci, 7(1), 102-111. doi:10.5114/aoms.2011.20612
Allam, R., Lawlor, K. E., Yu, E. C., Mildenhall, A. L., Moujalled, D.
M., Lewis, R. S., . . . Vince, J. E. (2014). Mitochondrial apoptosis
is dispensable for NLRP3 inflammasome activation but non- apoptotic caspase-8 is required
for inflammasome priming. EMBO Rep, 15(9), 982-990. doi:10.15252/ embr.201438463
Anand, R., Gill, K. D., & Mahdi, A. A. (2014). Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 76 Pt A, 27-50. doi:10.1016/j. neuropharm.2013.07.004
Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A. I., Martínez, C. M., Amores-Iniesta, J., Compan, V., .. . Pelegrín, P. (2014). The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol, 15(8), 738- 748. doi:10.1038/ni.2919
Bartus, R. T., Dean, R. L., Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408-414.
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 82(4), 239-259.
Brody, D. L., Magnoni, S., Schwetye, K. E., Spinner, M. L., Esparza, T. J., Stocchetti, N., . . . Holtzman, D. M. (2008). Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science, 321(5893), 1221-1224. doi:10.1126/ science.1161591
Bryan, N. B., Dorfleutner, A., Rojanasakul, Y., & Stehlik, C. (2009). Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol, 182(5), 3173-3182. doi:10.4049/ jimmunol.0802367
Bryant, C., & Fitzgerald, K. A. (2009). Molecular mechanisms involved in inflammasome activation. Trends Cell Biol, 19(9), 455-464. doi:10.1016/j.tcb.2009.06.002
Buée, L., Bussière, T., Buée- Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev, 33(1), 95-130.
Cai, X., Chen, J., Xu, H., Liu, S., Jiang, Q. X., Halfmann, R., & Chen, Z. J. (2014). Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell, 156(6), 1207-1222. doi:10.1016/j. cell.2014.01.063
Camacho-Arroyo, I., López-Griego, L., & Morales-Montor, J. (2009). The role of cytokines in the regulation of neurotransmission. Neuroimmunomodulation, 16(1), 1-12. doi:10.1159/000179661
Citron, M. (2010). Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov, 9(5), 387-398. doi:10.1038/nrd2896
Coll, R. C., Robertson, A., Butler,
M., Cooper, M., & O’Neill, L. A. (2011). The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One, 6(12), e29539. doi:10.1371/journal. pone.0029539
Cummings, J. L., & Back, C. (1998). The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am J Geriatr Psychiatry, 6(2 Suppl 1), S64-78.
Dal Prà, I., Chiarini, A., Gui, L., Chakravarthy, B., Pacchiana,
R., Gardenal, E., . . . Armato, U. (2015). Do astrocytes collaborate with neurons in spreading
the “infectious” aβ and Tau drivers of Alzheimer’s disease? Neuroscientist, 21(1), 9-29. doi:10.1177/1073858414529828
Dinarello, C. A., Simon, A., & van
der Meer, J. W. (2012). Treating inflammation by blocking interleukin-1 in a broad spectrum
of diseases. Nat Rev Drug Discov, 11(8), 633-652. doi:10.1038/nrd3800
TSMJ 2017 23
ORIGINAL ARTICLE
ORIGINAL ARTICLE
Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., . . . Group, S. S. (2013). A phase 3 trial of semagacestat for treatment
of Alzheimer’s disease. N Engl J Med, 369(4), 341-350. doi:10.1056/ NEJMoa1210951
Forloni, G., Chiesa, R., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, F., & Angeretti, N. (1993). Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35. Neuroreport, 4(5), 523-526.
Franklin, B. S., Bossaller, L., De Nardo, D., Ratter, J. M., Stutz, A., Engels, G., . . . Latz, E. (2014). The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol, 15(8), 727-737. doi:10.1038/ni.2913
Ganesan, S., Rathinam, V. A., Bossaller, L., Army, K., Kaiser, W.
J., Mocarski, E. S., . . . Fitzgerald, K. A. (2014). Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans. J Immunol, 193(5), 2519-2530. doi:10.4049/jimmunol.1400276
Greter, M., Lelios, I., & Croxford, A.
L. (2015). Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation. Front Immunol, 6, 249. doi:10.3389/fimmu.2015.00249
Guo, H., Callaway, J. B., & Ting, J. P. (2015). Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med, 21(7), 677- 687. doi:10.1038/nm.3893
Gurung, P., Anand, P. K., Malireddi, R. K., Vande Walle, L.,
Van Opdenbosch, N., Dillon, C.
P., . . . Kanneganti, T. D. (2014). FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol, 192(4), 1835-1846. doi:10.4049/ jimmunol.1302839
Halle, A., Hornung, V., Petzold,
G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., . . . Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta.
Nat Immunol, 9(8), 857-865. doi:10.1038/ni.1636
Hara, H., Tsuchiya, K., Kawamura,
I., Fang, R., Hernandez-Cuellar, E., Shen, Y., . . . Mitsuyama, M. (2013). Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck- like aggregates and inflammasome activity. Nat Immunol, 14(12), 1247- 1255. doi:10.1038/ni.2749
Hein, A. M., & O’Banion, M. K. (2009). Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol, 40(1), 15-32. doi:10.1007/s12035-009-8066-z
Heinrich, M., Robles, M., West,
J. E., Ortiz de Montellano, B.
R., & Rodriguez, E. (1998). Ethnopharmacology of Mexican asteraceae (Compositae). Annu Rev Pharmacol Toxicol, 38, 539-565. doi:10.1146/annurev. pharmtox.38.1.539
Heneka, M. T., Carson, M. J.,
El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D.
L., . . . Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol, 14(4), 388-405. doi:10.1016/S1474-
4422(15)70016-5
Heneka, M. T., Golenbock, D. T., & Latz, E. (2015). Innate immunity in Alzheimer’s disease. Nat Immunol, 16(3), 229-236. doi:10.1038/ni.3102
Heneka, M. T., Kummer, M. P., & Latz, E. (2014). Innate immune activation in neurodegenerative disease.
Nat Rev Immunol, 14(7), 463-477. doi:10.1038/nri3705
Heneka, M. T., Kummer, M. P.,
Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., . . . Golenbock,
D. T. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 674-678. doi:10.1038/nature11729
Heppner, F. L., Ransohoff, R. M., & Becher, B. (2015). Immune attack: the role of inflammation in Alzheimer disease. Nat
Rev Neurosci, 16(6), 358-372. doi:10.1038/nrn3880
Holmes, C., Cunningham, C., Zotova, E., Woolford, J., Dean, C., Kerr, S., . . . Perry, V. H. (2009). Systemic inflammation and disease progression in Alzheimer disease. Neurology, 73(10), 768-774. doi:10.1212/ WNL.0b013e3181b6bb95
Hook, V. Y., Kindy, M., & Hook, G. (2008). Inhibitors of cathepsin B improve memory and reduce beta- amyloid in transgenic Alzheimer disease mice expressing the wild- type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J Biol Chem, 283(12), 7745-7753. doi:10.1074/ jbc.M708362200
Hornung, V., Bauernfeind, F., Halle,A., Samstad, E. O., Kono, H., Rock, K. L., . . . Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization.
Nat Immunol, 9(8), 847-856. doi:10.1038/ni.1631
Horvath, G. L., Schrum, J. E., De Nardo, C. M., & Latz, E. (2011). Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev, 243(1), 119-135. doi:10.1111/j.1600- 065X.2011.01050.x
Huang, M. T., Taxman, D. J., Holley-Guthrie, E. A., Moore, C. B., Willingham, S. B., Madden, V., . .
. Ting, J. P. (2009). Critical role of apoptotic speck protein containing a caspase recruitment domain (ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells. J Immunol, 182(4), 2395-2404. doi:10.4049/jimmunol.0800909
Israel, M. A., Yuan, S. H., Bardy, C., Reyna, S. M., Mu, Y., Herrera, C., .. . Goldstein, L. S. (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 482(7384), 216- 220. doi:10.1038/nature10821
Juliana, C., Fernandes-Alnemri, T., Kang, S., Farias, A., Qin, F., & Alnemri, E. S. (2012). Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem, 287(43), 36617-36622. doi:10.1074/jbc. M112.407130
Kanneganti, T. D., Body-Malapel, M., Amer, A., Park, J. H., Whitfield,
J., Franchi, L., . . . Núñez, G. (2006). Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response
to viral infection and double- stranded RNA. J Biol Chem, 281(48), 36560-36568. doi:10.1074/jbc. M607594200
Karran, E., & Hardy, J. (2014). A critique of the drug discovery
and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol, 76(2), 185-205. doi:10.1002/ ana.24188
Karran, E., Mercken, M., & De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 10(9), 698-712. doi:10.1038/nrd3505
Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada,
Y., . . . Inoue, H. (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell, 12(4), 487-496. doi:10.1016/j.stem.2013.01.009
Krabbe, G., Halle, A., Matyash, V., Rinnenthal, J. L., Eom, G. D., Bernhardt, U., . . . Heppner, F. L. (2013). Functional impairment of microglia coincides with Beta- amyloid deposition in mice with Alzheimer-like pathology. PLoS One, 8(4), e60921. doi:10.1371/ journal.pone.0060921
Krstic, D., Madhusudan, A., Doehner, J., Vogel, P., Notter, T., Imhof, C., . . . Knuesel, I. (2012). Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation, 9, 151. doi:10.1186/1742-2094-9-151
Kurz, A., & Perneczky, R. (2011).
Novel insights for the treatment of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry, 35(2), 373-379. doi:10.1016/j.pnpbp.2010.07.018
Lamkanfi, M., & Dixit, V. M. (2012). Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol, 28, 137-161. doi:10.1146/ annurev-cellbio-101011-155745
Lamkanfi, M., & Dixit, V. M. (2014). Mechanisms and functions of inflammasomes. Cell, 157(5), 1013- 1022. doi:10.1016/j.cell.2014.04.007
Lesné, S. E., Sherman, M. A., Grant, M., Kuskowski, M., Schneider, J.
A., Bennett, D. A., & Ashe, K. H. (2013). Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain, 136(Pt 5), 1383-1398. doi:10.1093/brain/awt062
Lu, A., Magupalli, V. G., Ruan, J., Yin, Q., Atianand, M. K., Vos, M. R.,. . . Egelman, E. H. (2014). Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell, 156(6), 1193- 1206. doi:10.1016/j.cell.2014.02.008
Mariathasan, S., Weiss, D. S., Newton, K., McBride, J., O’Rourke, K., Roose-Girma, M., . . . Dixit, V.
M. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 440(7081), 228-232. doi:10.1038/nature04515
Martin, B. K., Szekely, C., Brandt, J., Piantadosi, S., Breitner, J. C., Craft, S., . . . Group, A. R. (2008). Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen
and celecoxib. Arch Neurol, 65(7), 896-905. doi:10.1001/ archneur.2008.65.7.nct70006
Martinon, F., Agostini, L., Meylan, E., & Tschopp, J. (2004). Identification of bacterial muramyl dipeptide as activator of the NALP3/ cryopyrin inflammasome. Curr Biol, 14(21), 1929-1934. doi:10.1016/j. cub.2004.10.027
Martinon, F., Mayor, A., & Tschopp, J. (2009). The inflammasomes: guardians of the body. Annu Rev Immunol, 27, 229-265. doi:10.1146/ annurev.immunol.021908.132715
Martinon, F., & Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases.
Cell, 117(5), 561-574. doi:10.1016/j. cell.2004.05.004
May, P. C., Gitter, B. D., Waters, D. C., Simmons, L. K., Becker, G. W., Small, J. S., & Robison, P. M. (1992). beta- Amyloid peptide in vitro toxicity: lot-to-lot variability. Neurobiol Aging, 13(5), 605-607.
McAfoose, J., & Baune, B. T. (2009). Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev, 33(3), 355-366. doi:10.1016/j.neubi- orev.2008.10.005
McGeer, P. L., McGeer, E., Rogers, J., & Sibley, J. (1990). Anti-inflammatory drugs and Alzheimer disease. Lancet, 335(8696), 1037.
McGeer, P. L., & McGeer, E. G. (2013). The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol, 126(4), 479-497. doi:10.1007/s00401-013-1177-7
McGeer, P. L., Schulzer, M., & McGeer, E. G. (1996). Arthritis and anti-inflammatory agents as possi- ble protective factors for Alzheim- er’s disease: a review of 17 epide- miologic studies. Neurology, 47(2), 425-432.
Miller, J. A., Woltjer, R. L., Good- enbour, J. M., Horvath, S., & Geschwind, D. H. (2013). Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med, 5(5), 48. doi:10.1186/gm452
Moll, M., & Kuemmerle-Desch- ner, J. B. (2013). Inflammasome and cytokine blocking strategies in autoinflammatory disorders. Clin Immunol, 147(3), 242-275. doi:10.1016/j.clim.2013.04.008
Ozaki, E., Campbell, M., & Doyle, S. L. (2015). Targeting the NLRP3 inflam- masome in chronic inflammatory diseases: current perspectives. J Inflamm Res, 8, 15-27. doi:10.2147/ JIR.S51250
Parajuli, B., Sonobe, Y., Horiuchi, H., Takeuchi, H., Mizuno, T., & Suzu- mura, A. (2013). Oligomeric amy- loid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis, 4, e975. doi:10.1038/cddis.2013.503
Perry, V. H., Cunningham, C., & Holmes, C. (2007). Systemic infec- tions and inflammation affect chronic neurodegeneration. Nat Rev Immunol, 7(2), 161-167. doi:10.1038/nri2015
Pimplikar, S. W. (2009). Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Bio- chem Cell Biol, 41(6), 1261-1268. doi:10.1016/j.biocel.2008.12.015
Py, B. F., Kim, M. S., Vakifahmeto- glu-Norberg, H., & Yuan, J. (2013). Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell, 49(2), 331-338. doi:10.1016/j.mol- cel.2012.11.009
Ramirez-Bermudez, J. (2012). Alzheimer’s disease: critical notes on the history of a medical con- cept. Arch Med Res, 43(8), 595-599. doi:10.1016/j.arcmed.2012.11.008
Rao, J. S., Kellom, M., Kim, H. W., Rapoport, S. I., & Reese, E. A. (2012). Neuroinflammation and synaptic loss. Neurochem Res, 37(5), 903-910. doi:10.1007/s11064-012- 0708-2
Roberson, E. D., Scearce-Levie, K., Palop, J. J., Yan, F., Cheng, I. H., Wu, T., . . . Mucke, L. (2007). Reduc- ing endogenous tau ameliorates amyloid beta-induced deficits
in an Alzheimer’s disease mouse model. Science, 316(5825), 750-754. doi:10.1126/science.1141736 Rogers, J., Webster, S., Lue, L. F., Bra- chova, L., Civin, W. H., Emmerling, M., . . . McGeer, P. (1996). Inflam- mation and Alzheimer’s disease pathogenesis. Neurobiol Aging, 17(5), 681-686.
Sala Frigerio, C., & De Strooper, B. (2016). Alzheimer’s Disease Mecha- nisms and Emerging Roads to Novel Therapeutics. Annu Rev Neurosci, 39, 57-79. doi:10.1146/annurev- neuro-070815-014015
Saresella, M., La Rosa, F., Piancone, F., Zoppis, M., Marventano, I., Calabrese, E., . . . Clerici, M. (2016). The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener, 11, 23. doi:10.1186/s13024-016-0088-1
26 TSMJ 2017
Sastre, M., Walter, J., & Gentleman, S. M. (2008). Interactions between APP secretases and inflammatory mediators. J Neuroinflammation, 5, 25. doi:10.1186/1742-2094-5-25
Scarpini, E., Bruno, G., Zappalà, G., Adami, M., Richarz, U., Gaudig, M., . . . Schäuble, B. (2011). Cessation versus continuation of galantamine treatment after 12 months of therapy in patients with Alzheimer’s disease: a randomized, double blind, placebo controlled withdrawal trial. J Alzheimers Dis, 26(2), 211-220. doi:10.3233/JAD- 2011-110134
Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821-832. doi:10.1016/j. cell.2010.01.040
Sheedy, F. J., Grebe, A., Rayner, K. J., Kalantari, P., Ramkhelawon, B., Carpenter, S. B., . . . Moore, K. J. (2013). CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol, 14(8), 812-820. doi:10.1038/ni.2639
Shipton, O. A., Leitz, J. R., Dworzak, J., Acton, C. E., Tunbridge, E. M., Denk, F., . . . Vargas-Caballero, M. (2011). Tau protein is required
for amyloid {beta}-induced impairment of hippocampal long- term potentiation. J Neurosci, 31(5), 1688-1692. doi:10.1523/ JNEUROSCI.2610-10.2011
Siemers, E. R., Sundell, K. L., Carlson, C., Case, M., Sethuraman, G., Liu-Seifert, H., . . . Demattos,
R. (2016). Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement, 12(2), 110-120. doi:10.1016/j.jalz.2015.06.1893
Simard, A. R., Soulet, D., Gowing, G., Julien, J. P., & Rivest, S. (2006). Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 49(4), 489-502. doi:10.1016/j.neuron.2006.01.022
Steinerman, J. R., Irizarry, M., Scarmeas, N., Raju, S., Brandt, J., Albert, M., . . . Stern, Y. (2008). Distinct pools of beta-amyloid in Alzheimer disease-affected brain: a clinicopathologic study. Arch Neurol, 65(7), 906-912. doi:10.1001/ archneur.65.7.906
Stewart, W. F., Kawas, C., Corrada, M., & Metter, E. J. (1997). Risk of Alzheimer’s disease and duration of NSAID use. Neurology, 48(3), 626- 632.
Strowig, T., Henao-Mejia, J.,
Elinav, E., & Flavell, R. (2012). Inflammasomes in health and disease. Nature, 481(7381), 278-286. doi:10.1038/nature10759
Sutterwala, F. S., Haasken, S., & Cassel, S. L. (2014). Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci, 1319, 82-95. doi:10.1111/nyas.12458
Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805-820. doi:10.1016/j.cell.2010.01.022
Tan, M. S., Yu, J. T., Jiang, T., Zhu,
X. C., & Tan, L. (2013). The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol, 48(3), 875-882. doi:10.1007/s12035-013- 8475-x
Verri, M., Pastoris, O., Dossena, M., Aquilani, R., Guerriero, F., Cuzzoni, G., . . . Bongiorno, A. I. (2012). Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer’s disease. Int J Immunopathol Pharmacol, 25(2), 345-353.
Vlad, S. C., Miller, D. R., Kowall, N. W., & Felson, D. T. (2008). Protective effects of NSAIDs on the development of Alzheimer disease. Neurology, 70(19), 1672-1677. doi:10.1212/01. wnl.0000311269.57716.63
Vossel, K. A., Zhang, K., Brodbeck, J., Daub, A. C., Sharma, P., Finkbeiner, S., . . . Mucke, L. (2010). Tau reduction prevents Abeta-induced defects in axonal transport. Science, 330(6001), 198. doi:10.1126/ science.1194653
Wen, H., Miao, E. A., & Ting, J. P. (2013). Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity, 39(3), 432-441. doi:10.1016/j. immuni.2013.08.037
Xia, W., Yang, T., Shankar, G., Smith, I. M., Shen, Y., Walsh, D. M., & Selkoe, D. J. (2009). A specific enzyme- linked immunosorbent assay for measuring beta-amyloid protein oligomers in human plasma
and brain tissue of patients with Alzheimer disease. Arch Neurol, 66(2), 190-199. doi:10.1001/ archneurol.2008.565
Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster- Granite, M. L., & Neve, R. L. (1989). Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science, 245(4916), 417-420.
Yao, J., Irwin, R. W., Zhao, L., Nilsen, J., Hamilton, R. T., & Brinton, R. D. (2009). Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A, 106(34), 14670-14675. doi:10.1073/ pnas.0903563106
Yiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord, 6(1), 19-33. doi:10.1177/1756285612461679
Zhang, B., Gaiteri, C., Bodea, L. G., Wang, Z., McElwee, J., Podtelezhnikov, A. A., . . . Emilsson, V. (2013). Integrated systems approach identifies genetic
nodes and networks in late-onset Alzheimer’s disease. Cell, 153(3), 707-720. doi:10.1016/j. cell.2013.03.030
Zhou, R., Yazdi, A. S., Menu,P., & Tschopp, J. (2011). A role
for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221-225. doi:10.1038/ nature09663
Zhu, S. G., Sheng, J. G., Jones, R. A., Brewer, M. M., Zhou, X. Q., Mrak, R. E., & Griffin, W. S. (1999). Increased interleukin-1beta converting enzyme expression and activity in Alzheimer disease. J Neuropathol Exp Neurol, 58(6), 582-587.
Zotova, E., Nicoll, J. A., Kalaria, R., Holmes, C., & Boche, D. (2010). Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther, 2(1), 1. doi:10.1186/alzrt24

Downloads

Published

2017-01-01

How to Cite

Milner, M. (2017). Targeting the Inflammasome: A cure for Alzheimer’s disease?. Trinity Student Medical Journal , 18(1), 14–28. Retrieved from https://ojs.tchpc.tcd.ie/index.php/tsmj/article/view/1760

Similar Articles

<< < 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.