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Long non-coding RNAs (lncRNAs) have emerged as prolific 
regulators of gene expression. lncRNAs are RNA transcripts which 
do not code for proteins like “conventional” genes. lncRNA was 
once presumed to be non-functional genomic noise and biologically 
irrelevant. Recent work, however, has shown that lncRNAs are 
spatiotemporal ‘master regulators’ of the genome. Unlike double 
stranded DNA, single-stranded lncRNA folds internally to assume 
complex structures which allows it to recruit protein complexes 
such as Polycomb Repressive Complex 2 (PRC2) and repress genes. 
This lncRNA regulation was first shown in X inactivating specific 
transcript (Xist) in mammalian females, which inactivates one of two 
X chromosomes to prevent X gene and subsequent protein double-
dose. Such whole-chromosome inactivation may also be applied in 
treatments for chromosome disorders such as Down’s syndrome. 
HOX transcript antisense RNA (HOTAIR) broadens the extent of 
lncRNA gene regulation, controlling hundreds of genes around the 
genome. HOTAIR’s widespread control has implications in cancer, 
as HOTAIR regulates tumour suppressor genes. lncRNA control 
also regulates immune system responses and initiated pathogenic 
infection. lncRNA regulation provides ‘fine control’ of genes, 
and a full understanding of lncRNA may improve diagnostic and 
therapeutic approaches to disease in the future. 
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Introduction
Most of the human genome is transcribed into RNA, but never translated into 
protein (Carninici et al. 2005,Flicek et al 2014). This non-translated DNA is not, as 
was once thought ‘junk’ or functionless. Instead, it produces a diverse array of 
regulatory non-coding RNAs (Martin & Chang 2012,Brosnan & Voinnet,  2009). 
Long non-coding RNAs (lncRNAs) are those longer than 100 nucleotides that do 
not code for a protein. Instead, lncRNAs have functions ‘distinct’ from protein 
coding (Fitzgerald & Caffrey 2014). They assemble into structures and work 
as guides and modulators of protein complexes which regulate when and at 
which chromosomal point e genes are expressed (Mercer and Mattick 2013). One 
such complex is the histone modifying protein complex Polycomb Repressive 
Complex 2 (PRC2). Histones are the proteins which package and organise DNA 
and PRC2 modifications to histones can repress gene expression. lncRNAs 
evolved as PRC2’s spatiotemporal directors (Lee 2012), ‘master’ overseers of 
genomic regulation (Nie et al. 2012). An LNCipedia database has been assembled 
for these ‘master’ regulators, cataloguing their characteristics. (Volders et al. 
2012), (Volders et al. 2015), (Nie et al. 2012). The evolution of lncRNA explains 
some of the ‘fine control’ of gene expression (Luco 2013).

One of the first notable demonstrations of lncRNA genome regulation was the 
X inactivating specific transcript (Xist) (Brown et al. 1991a), (Brown et al. 1991b), 
(Borsani et al. 1991), (Brockdorff et al. 1991a). In mammalian females, one of the 
two X (sex) chromosomes are silenced during development to prevent double-
dosage of X chromosome genes. Xist is a conserved lncRNA (Brockdorff et al. 
1991) transcribed from the X chromosome to be silenced, which co-ordinates the 
repression of the entire chromosome in X inactivation (Brockdorff et al. 1992), 
guiding PRC2 to repress X genes. 

Xist provided the initial evidence of lncRNA’s regulatory significance. Genomic 
studies have shown  that such RNAs are widespread within the genome (Bertone 
P. et al. 2004), (Bernstein et al. 2006). With Xist demonstrating such powerful 
control over entire chromosomes, research into its application in silencing extra 
chromosomes in Down’s syndrome has begun (Jiang et al. 2013).

Investigation into other lncRNAs that could regulate gene expression led to 
the discovery of HOX transcript antisense RNA (HOTAIR) lncRNA, regulating 
hundreds of genes in a wide regulatory network (Rinn et al. 2007). HOTAIR 
regulates many genes involved in cancer development and metastasis (Gupta et 
al. 2010). lncRNAs also activate host immune system responses as well as allow 
pathogens to initiate infection (Carpenter et al. 2013). Biological complexity arises 
not from sheer quantity of genes, but the finer control of when and where they 
are expressed. lncRNAs have emerged as critical regulators of this control and 
have the potential to affect all areas of gene expression (Necsulea et al. 2014), 
(Kogo et al. 2011).
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lncRNA Lessons in X-Inactivation
Analysis of complete mammalian genome has shown an abundance of non-coding 
RNA (Carninci et al. 2005). lncRNA relevance was first shown in the lncRNA 
orchestration of the X inactivation centre (Xic). Mammalian females have two 
X chromosomes, whereas males have one. To ensure equal X gene expression in 
males and females, approximately 1000 X-linked genes (Brown et al. 1991a) on one of 
the two, randomly selected X chromosomes are repressed in females. Such dosage 
compensation was first observed by Mary Lyons (Lyons 1961). The inactivated 
chromosome is turned into a compact “Barr Body” incapable of gene expression 
(Walker et al. 1991).  

Protein complexes catalyse X-inactivation, but require lncRNAs to be directed to 
their targets. lncRNAs recruit and coordinate the activity of the repressive PRC2 
protein complex to “turn off” one X chromosome. PRC2 is a multi-subunit protein 
complex (Margueron et al 2011) which, by adding repressive (methyl) marks to the 
histone proteins (package and organise DNA), can inhibit gene expression (Clapier 
& Cairns 2009). In the Xic, at least seven lncRNAs coordinate the actions of PRC2 
to control X chromosome inactivation (Lee 2009). Xic demonstrates the ability of 
lncRNA to orchestrate regulation of gene expression (Figure 1).

This ability of RNA to form complex structures is essential to their ability to 
recruit proteins and guide them to control gene expression (Sharp et al. 2009). Xist 
is a 17 kilobyte lncRNA transcribed exclusively from the inactive X chromosome 
and it  does not code for protein translation like conventional transcriptional 
RNA (Brown et al. 1992). Instead, it folds into a complex secondary structure 
which allows Xist docking to the repressive PRC2 complex. It loads PRC2 with a 
distinct structural motif, Repeat A (RepA), a tetra-loop loading platform for this 
repressive complex (Zhao et al 2008), (Duszczyk et al. 2011). This lncRNA folding 
is significant as complex folded structures are hallmarks of functional biological 
molecules. Once loaded to the chromosome by Xist, PRC2 adds methyl groups 
to the histone proteins to epigenetically repress expression of X genes. The bases 
in lncRNAs, unlike those in double stranded DNA, can fold in on each other and 
form stable structures, such as the tetra-loop RepA.
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Figure 1. X-Chromosome Inactivation. The X-Inactivation centre (Xic) is present on both the active X 
chromosome (Xa) and the inactive X chromosome (Xi). Xic encodes for Xist and when expressed Xist 
RNA binds PRC2. PRC2 facilitates the initiation of inactivation of the X chromosome destined to be 
inactivated; Xi, through the direction of Xist RNA. Xist then propagates and through maintained 
interactions with PCR2 keeps Xi inactive.

Xist is the master lncRNA, initiating the process by spreading across the entire 
3-D structure of the inactive chromosome (Clemson et al. 1996). It guides the 
repressive PRC2 which modifies the histone proteins packaging the DNA. Xist 
performs this job locally repressing the chromosome from which it is transcribed 
and regulation of the inactivation is provided by other lncRNAs.

The 40 kilobyte lncRNA Tsix is transcribed from and negatively regulates Xist 
on the active X chromosome, allowing gene expression (Lee et al. 1999). Xist is 
activated on the inactive chromosome by another lncRNA, Jpx. Jpx activates Xist 
allowing it to repress the inactive chromosome (Tian et al. 2010). Tsix and Jpx act 
as lncRNA ‘switches’ with opposing controls over Xist on either chromosome 
(Figure 2). 
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Figure 2. X-Inactivation centre (Xic) gene expression on Xi and Xa. Jpx and Tsix are the positive and 
negative regulators of Xist repression on either chromosome. Xa will produce Tsix. Jpx activates Xist 
on Xi. The RepA motif from Xist recruits the repressive PCR2 complex. The RepA motif then binds 
PRC2 and together with Xist will catalyse the repression of the Xi chromosome. Tsix on the other hand 
prevents PRC2 binding Xist and thus ensures the Xa remains active.

The designation of chromosomes as either ‘active’ or ‘inactive’ X’s is also controlled 
by lncRNA and is thought to be clonally maintained. Initially identical chromosomes 
become active or inactive after making physical contact. The “choice” of which 
X chromosome is to be silenced is made by Xite. Xite is an RNA element which 
enhances Tsix on the active chromosome alone leaving Xist to repress the inactive 
chromosome (Ogawa & Lee 2003).

Xic is illustrative of extensive, chromosome-specific lncRNA regulation. lncRNAs 
either repress chromosomes (Xist, Jpx) or activate them (Tsix). The chromosomes 
‘choose’ which lncRNAs they will express by communicating through physical 
contact between Tsix and Xite RNA (Xu et al.2006), (Lee 2009), (Ogawa & Lee, 2003), 
while ultimately repression of inactive X chromosome is performed by proteins 
(PRC2), spatiotemporal control of these proteins is lncRNA driven.
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Applying Xist Lessons to Trisomy Disorders
Trisomy disorders develop in patients with three copies of any chromosome 
instead of the usual two. Down’s syndrome (DS) is a chromosomal disease 
caused by trisomy of chromosome 21 (Chr21). Xist’s ability to repress an entire 
chromosome could be applied in possible chromosomal therapies to turn off the 
supranumery DS chromosome. Jiang et al. (2013) tested this approach, applying Xist 
to cells derived from DS patients. Xist RNA “territories” were established in 85% 
of cells. 95% of Chr21 genes were repressed, bringing gene expression levels closer 
to normal, two-chromosome cells. This chromosome inactivation was maintained 
after three weeks, similar to inactive X chromosomes. This demonstrates that 
Xist lncRNA can silence extra chromosome in DS cells as it does to the inactive 
X. Most notably, Xist inactivation of Chr21 introduces the tentative possibility of 
corrections, or at least therapeutic options, for chromosomal disorders involving 
lncRNAs in the future (Disteche 2013).

HOTAIR broadens lncRNA influence
X inactivation’s demonstration of powerful lncRNA genetic regulation led to 
research into other functional lncRNAs controlling gene expression. Functional 
lncRNA is identified by demonstrating interactions with regulatory complexes. 
The RIP-seq technique developed by Zhao et al (2010) identified thousands of 
lncRNAs which bind to and control PRC2, thus repressing genes. Such widespread 
lncRNA regulation was previously suggested by Khalil et al. (2009). With thousands 
of lncRNAs guiding and modulating protein complexes, they have since been 
dubbed genomic ‘master regulators’ (Nie et al. 2012) 

One such master regulator is the lncRNA HOTAIR identified by Rinn et al (2007) 
and Woo & Kingston (2007) regulating thousands of genes across the genome in an 
expansive regulatory network (Lee et al 2012).HOTAIR folds into a more elaborate 
structure than Xist, acting as a scaffold for multiple protein complexes which control 
gene expression (Tsai et al 2010). Further studies of HOTAIR identified a specific 
89-nucleotide binding site for PRC2 (Wu et al. 2013). A precise structural analysis of 
HOTAIR revealed multiple motifs (helical sections, terminal loops, internal loops, 
and junctions) in four domains, some binding PRC2 (Somarowthu et al. 2015). Such 
folding was previously thought characteristic of proteins but lncRNAs can self-
assemble into similarly complex structures. Structure is essential to function in 
biomolecules and is another demonstration of lncRNA biological significance.
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lncRNA – Implications In Disease
lncRNAs are widespread gene expression controllers and biological complexity 
comes not from increasing the number of genes, but in precise control of when, 
where, and for how long they are expressed. This control is important in 
organising immune responses to pathogens and its dysregulation is involved 
in carcinogenesis.

Immune function and immunopathology

lncRNAs are important regulators of immune system genes controlling both 
pathogenic  and host responses (Yu et al. 2015) and many immune genes are X-linked. 
lncRNAs activate host immune responses to pathogens by controlling expression of 
hundreds of immune system genes (Fitzgerald & Caffrey 2014), (Heward & Lindsay 
2014). Immunity lncRNAs include ‘Nettoie Salmonella pas Theiler’s’ (NeST), which 
activates Interferon-γ (IFN-γ), a  cytokine involved in defence against pathogenic 
infection (Gomez et al. 2013), (Baccala et al. 2005), (Hertzog et al. 2011). Toll-like 
receptors (TLRs) recognise pathogen-associated molecular patterns (PAMPs), 
molecules characteristic of pathogenic micro-organisms, helping to initiate 
inflammatory responses (Janeway & Medzhitov 2002). TLR4, after recognising  
Gram negative bacterial component lipopolysacharride, induces Cox-2 lncRNA 
expression. Cox-2 regulates hundreds of immune genes, repressing some and 
activating others to coordinate immune response (Guttman et al 2009), (Carpenter 
et al. 2013), (Li & Rana 2014). 

TNFα and hnRNPL related immunoregulatory LincRNA (THRIL) activates tumour 
necrosis factor α (TNF-α) as well as other genes involved in the immune response 
(IL-8, CSF1, & CCL1) (Li et al. 2014). Genes encoding IL-8 and CCL5 are also activated 
by another  lncRNA, nuclear enriched abundant transcript 1 (NEAT1) (Imamura et 
al. 2014). 

Pathogens can exploit host lncRNA to infect their cells. HIV-1 viruses upregulate 
host cell NEAT1 to increase viral replication (Zhang et al. 2013), (Atianand & 
Fitzgerald 2014). A second host RNA, noncoding repressor of Nuclear Factor of 
T-Cells [NFAT] (NRON), is upregulated by HIV to control viral activity at specific 
stages during its life cycle (Imam et al 2015). The range of host lncRNAs exploited 
by HIV are reviewed by Lazar et al. (2016)   

Pathogens express their own lncRNA during infectious attack. Kaposi’s sarcoma-
associated herpes virus (KSHV) expresses polyadenylated nuclear (PAN) RNA, 
which enhances viral activity and inhibits host immune response during infection. 
(Rossetto & Pari 2011). Human cytomegalovirus (HCMV) uses the lncRNA β-27 to 
prevent apoptosis in HCMV-infected cells, keeping them alive and protecting the 
virus, to permit persistent infection (Zhang & Jeang 2013), (Tycowski et al. 2015). 
Through their regulation of gene expression lncRNAs control both pathogenic 
infection and the host immune response, however notably the pathogens themselves 
can also use lncRNAs to evade the immune system. 
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Cancer

As HOTAIR regulates hundreds of genes, including tumour suppressors, loss of 
its control results in cancer development and metastasis (Lee et al. 2006) (Zhao et al. 
2010), (Esteller 2011), (Wapinski & Chang 2011). Understanding HOTAIR’s role in 
cancer may improve diagnosis and provide therapeutic targets (Zhang et al. 2014)

HOTAIR expression is significantly increased in breast cancer epithelial cells 
(Gupta et al. 2010). Experimental overexpression of HOTAIR guides PRC2 to 
repress 854 genes including tumour suppressors such as PCDH and JAM2, 
inducing breast cancer development(Gupta et al. 2010), (Novak et al. 2008), (Naik 
et al. 2008). HOTAIR repression of tumour suppressors removes the safe-guards 
against breast cancer. This control over tumour suppression also applies to other 
cancer types. Overexpression of HOTAIR increases metastatic and invasive 
capability of colorectal cancers through inhibition of genes which suppress tumour 
growth such as cadherin, which normally maintains cellular adhesion, preventing 
metastasis (Jeanes et al. 2008), (Berx & van Roy 2009). HOTAIR overexpression is 
also associated with hepatocellular carcinoma, upregulating MMP-9 and VEGF, 
genes which  promote metastasis (Geng et al. 2011). In gastric cancers, HOTAIR 
overexpression results in dysregulation of metastasis-associated genes (ICAM-1, 
MMP1, MMP3 & MMP9)(Xu et al. 2013), (Emadi-Andani et al. 2014), (Endo et al. 
2013). As a result of HOTAIR’s wide regulatory reach, many tumour-related genes 
become dysregulated in HOTAIR overexpression, leading to cancer (Cai et al. 2014). 

Conclusion 
The fine spatiotemporal control that lncRNAs provide to the genome demonstrates 
the regulatory significance of lncRNA. lncRNA ‘master’ regulation is an elaborate, 
widespread mechanism for controlling when and where genes are expressed. 
lncRNAs in the X-inactivation centre allows chromosomes to communicate with 
each other, establish correct expression profiles (Tsix, Xite vs Jpx, Xist), and repress 
the X chromosome appropriately. Xist chromosome inactivation can be applied to 
extra chromosomes in Trisomy conditions such as Down’s syndrome, potentially 
implicating chromosomal therapies for this disorder. HOTAIR extends the influence 
of lncRNA to hundreds of genes across the genome (Lee, 2012). The dysfunction 
of HOTAIR regulation leads to cancer because lncRNAs control wide regulatory 
networks, which include tumour suppressors. lncRNA regulation is also used by 
host immune system responses as well as pathogens infection.

lncRNA gene regulation remains poorly understood. Chromosome inactivation and 
lncRNA regulation of cancer and immunity are interesting , however many precise 
details of lncRNA function remain unclear. Further investigation will undoubtedly 
reveal more uncharted non-coding RNA as only 25 years have passed since Xist’s 
characterisation. With improved sequencing and structural studies, the hidden 
complexity of genomic silencing may become understood.
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